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Abstract. Many scattering systems can be described as scattering of a point particle off a 
multicentre potential. In this paper we present a two-centre system which shows either regular 
or chaotic scattering depending on the kinetic energy, i.e. the velocity of the incoming particle. 
The transition points to chaotic scattering CM be derived analytically by linearization of the 
P o i n d  map. At one of these transition velocities there is a degenerake bifurcation where the 
invariant set contains a parabolic surface and where the time delay statistics is algebraic with 
power d = 2. 

1. Introduction 

The properties of a chaotic scattering system depend essentially on the values of the system 
parameters. For continuous potentials a natural parameter is the energy E and therefore 
in this paper we always study the scattering behaviour as a function of E or of some 
equivalent quantity. Of course, analogous results might be found as well for the dependence 
on completely different parameters. 

A rather common scenario in scattering systems is the following: For E =- Ec the 
scattering is regular and there is no topological chaos in the energy surfaces FE in phase 
space.  for^ E c E, the scattering is chaotic and there is topological chaos in the energy 
surfaces. At E ,= E, a chaotic saddle A is created which causes the scattering functions 
as, for example, the deflection function or the time delay function to become chaotic, i.e. to 
show singularities on a fractal subset of their domain. For a recent overview of scattering 
chaos see the feature issue of the journal Chaos on chaotic scattering [l]. 

There exist two basically different generic bifurcation scenarios by which scattering can 
tum chaotic at E = Ec [2]. In the first scenario the creation of A is initiated by a saddle- 
centre bifurcation of the most important periodic orbits. And for decreasing values of E 
more and more different periodic orbits are filled in by sequences of further saddle<entre 
bifurcations and by cascades of period doublings. Accordingly, the eigenvalues of the basic 
periodic orbits go to 1 for E -+ Ec from below and A is certainly not hyperbolic in a 
vicinity of E,. Exactly at E = Ec, A consists of a single parabolic orbit. For a description 
of such an example, namely the scattering off the magnetic dipole, see [3]. 

In the second generic scenario A pinches to a line in the energy surface FE for E + Ec 
from below while the eigenvalues of the periodic orbits go to infinity. Below Ec there is 
an energy interval (EO, Ec) in which A is hyperbolic and structurally stable. For an early 
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observation of such a case see [4]. Later this second scenario has been given the name 
'abrupt bifurcation' [2,5-6]. 

These two scenarios are the generic possibilities, how scattering can turn chaotic, 
but certainly they are not the only possibilities. To demonstrate the existence of further 
possibilities, in this paper we describe a degenerate case, in which A appears suddenly at 
E = E, in a scenario which has a mixture of features of the two scenarios mentioned above 
and so in addition some unusual properties. Namely, part of the periodic orbits becomes 
infinitely unstable and pinches to a line L, while at the same time an elliptic fixed point 
together with its surrounding KAM island turns into a continuum of parabolic periodic orbits 
which for E = E, form a two-dimensional surface S, within Fee. Part of L, forms a p m  
of the boundary line of S,. 

In section 2 we describe our particular model which is a two-centre Coulomb potential 
with hard cut-off. Section 3 contains the development of A as E approaches Eo from below 
and section 4 describes the unusual invariant set exactly at E = E,. Section 5 shows an 
approach to the critical energy E, in terms of a sequence of symbolic dynamics. In the final 
section we compare our model with some other situations and give some remarks why the 
study of it may be interesting even though it is a non-generic degenerate case. 

C Lipp and C Jung 

2. The model 

Let us consider the scattering of a point particle under the influence of two amactive cut 
off Coulomb potentials in a plane. The Hamiltonian is given by 

where rl and r2 are the distances to the centres and the potential V ( r )  consists of a Coulomb 
potential with a sharp cut-off at r = a: 

r > a .  
V ( r )  = 

The centres are placed at x = 0 and y = iR. The constant term l / a  is added to V ( r )  in 
order to avoid a discontinuity in the potential at r = a and 2R, the distance between the 
centres, is taken to be larger than 2a. so there is no overlap of the two Coulomb potentials. 

When we use the velocity U as a parameter in the following, then this always means 
the particle velocity outside of the potentials. Therefore it is equivalent to the total energy 
E = u2/2  taken as parameter. 

2.1. Scattering at one centre 

The deflection function for the scattering at one of the potentials V only depends on the 
impact parameter bl,, with respect to the centre of the potential and on the energy, i.e. the 
velocity U of the particle in the asymptotic region. Outside the interaction region r < a the 
motion of the particle is a straight line and inside each potential it can be described as a 
segment of a Kepler ellipse 

with Kepler energy Ek = u2/2  - l / a  and angular momentum L = blo,v. 
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For positive~impact parameters the scattering angle can be written as 

- arccos ".) . (4) 
bt,u2 - a B(&. U )  = 2 arccos ( , I  a2 -k a2b&u4 - 2abt,uz a 

The first term results from the angle of the Kepler ellipse between the point where the 
particles enter the potential and the perihelion of the ellipse. 

For negative impact parameters B(bl,,, U) * 2n - O(lbl,,cl, U). 
If b > a the particle does not reach the interaction region and therefore B(bl,, U) is set 

to zero. 
It is easy to see that B(b,,,, U) = R for bl, = 0 independent of the velocity. For later 

considerations it is essential that for U = UA = the scattering angle also takes the 
value H for all values of bloc in the interval [ -a ,  a ] .  This c& be seen by an elementary 
geometrical construction. In a Coulomb potential any Kepler ellipse to this particular energy 
is intersected by the cut-off circle of radius a in the two middle points of the flat sides, i.e. 
in the two points where the curvature is minimal. The tangent lines to these two points of 
the ellipse are parallel to each other. 

For U < uA the scattering angle is a monotonically increasing function of bloc and for 
U > UA it is monotonically decreasing. The one-centre system is integrable because the 
angular momentum L with respect to its centre is a conserved quantity. 

2.2. Scattering at two centres 

With two centres the angular momentum is no longer conserved and we  may have chaotic 
scattering. A necessary [I] (but not sufficient [7]) condition for this is an infinite number of 
unstable localized orbits. Therefore let us have a look at the most important periodic orbits 
of our system along which the particle switches between the two Coulomb centres. There 
are three orbits of period one in the PoincarB map to be defined below'(see figure 1): 

-3- -3- ++----A 
-2 -1  0 1 2 -2 -I 0 1 2 - 2 ~  -1 0 1 2 

Figure 1. The three basic periodic orbits. The stadium A only occurs at U = UA. the figure-of- 
eight orbit B in'the interval q < U c VA and the bouncing ball C at every velocity. The centres 
of the potentials are "ked by cmsses, the cut-off circles are plotted with broken curves. 

(A) The stadium orbit where the particle runs parallel to the y-axis between the two 
potentials and always gets deflected at an angle of H. This orbit exists at the velocity 
uA = 

(B) The figure-of-eight orbit where the p d c l e  crosses the origin of our coordinate 
system after each deflection. The angle between the straight pieces of the trajectory depends 
on U and for each velocity in an interval UB < v < U A  there is exactly one orbit of this 

for all impact parameters with absolute value less than a .  
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type and its mirror image with reversed orientation. The value of the bifurcation velocity 
uB will be derived in the next section. 

(C) In the third simple periodic orbit the particle bounces directly between the centres 
of the two potentials and is always reflected at an angle of ir. This bouncing ball orbit can 
be found at every velocity and it will become very important for understanding the overall 
development of A. 

There are also two orbits of period two, one of which will be import& later (see 
figure 2). They branch out of the orbit C at the velocity uc = (UA + u ~ ) / 2  where the 
winding number of C (which will be defined in the next section) equals 10 and they exist 
in the interval uc < U < UA: 

C Lipp and C Jung 

4-44 , , , ~ I- 
- 2 - 1  o 1 2  - 2 - 1  o , z 

Figure 2. The two orbits of period two: the folded double loop D and the droplet orbit E. They 
both exist in an interval uc < U < OA. 

(D) The folded double loop which can be overshadowed by segments of the stadium 
orbit and the figure-of-eight orbit alternatingly. Its symmetry partner runs along the same 
trace in position space with reversed orientation. 

(E) The droplet orbit which runs directly into the upper centre under an angle y ( u ) ,  
is backscattered by x and then deflected by the lower potential region in such a way that 
it runs straight into the upper centre again with an angle of -y (u)  where it bounces back 
again. The symmetry partner of this orbit can be obtained by a reflection in the x-axis. 

Depending on the velocity there are many more periodic orbits which can all be 
overshadowed quite well by a few basic orbit segments along the following scheme. Cut 
any localized orbit into segments separated at the points where it crosses the y-axis at either 
y > R or at y < - R .  If the x component of the velocity has different signs at the initial 
and final point of a segment, then this segment is of similar qualitative structure as half 
a stadium orbit and we overshadow it by half a stadium orbit. If these two signs are the 
same, then this segment has a structure qualitatively similar to half of a figure-of-eight orbit 
and it is overshadowed by half this periodic orbit. As a further degenerate orbit element 
for overshadowing we introduce a piece of trajectory hitting directly a potential centre and 
being reflected in itself. By these three basic elements and all its mirror images about the 
symmetry lines of the potential we can overshadow any localized orbit and in particular any 
periodic orbit of the system. 

The stadium orbit itself only exists at exactly U = U*. Therefore for U < U A  only finite 
blocks of the stadium type are allowed in the overshadowing process. For increasing U the 
maximally allowed length of these blocks increases and for U + uA this maximal length 
converges to infinity giving the stadium orbit itself. 

For all numerical examples shown in the rest of the paper we make the choice: a = 1, 
R = 3 12. This leads to UA = 1. 



Degenerate bifurcation to c h o s  6891 

3. Bifurcation scenario 

In configuration space the centres ,of our potentials are located on the y-axis and 
symmetrically to the x-axis, so all trajectories have to cross the x-axis in order to switch 
between the two Coulomb centres. Therefore we take our PoincarB surface of section at 
y = 0 and p, > 0. For any fixed value of the energy we take as coordinates in the two- 
dimensional plane of intersection b and y ,  where b is the impact parameter with respect 
to the origin of O'W coordinate system and y = arctan(p,/p,) is the angle between the 
velocity vector and the y-axis, y E [-n/2, n/2]. 

The mapping M which describes the interaction of the particle with one of the centres 
is defined by 

(5) 

(6) 
This map M can be interpreted as a symmetry reduced PoincarB map where we disregard 

the sign of p, at the moment of intersection with the plane y = 0 and thereby we reduce 
out the reflection symmetry in the line y = 0. The Poincark map itself is given by M 2 .  In 
figure 3 some plots of the section are shown for different velocities. 

y' = y -B(b + Rsiny, v) 
6' = b + Rsin y + R sin y'. 

3.1. Linearization of the mop 

The linearization of M around a fixed point (bo, yo) is given by 

1 - B'R COS yo 
R COS yo(2 - B'R COS yo) 1 - B'R COS yo 

where 

(7) 

As noted before the bouncing ball orbit exists at every velocity thereby giving a 
persistent fixed point at (0,O) in our mappings. The eigenvalues of A? around this point are 
given by 

(9) A+ = 1 - 2R( l /a  - v2) *2RJ(1  / a  - u2)( l /a  - 1 j R  - u2) 

v A = m  U g = d m I  (10) 

d = ( v i  - u2),/(u; - U;) = R ( l / a  - v2)  

and the bifurcation velocities where the eigenvalues change from real to complex are 

Introducing a new parameter d for the relative distance of the energy from the bifurcation 
points 

(11) 
the eigenvalues can b e  rewritten as 

A+ = -(&i m)2 
where d = 1, corresponds to v = ug and d = 0 for U = VA.  Because de tG = 1 we find 

For velocities v < ug where d > 1 we get negative eigenvalues in the map M but 

For ug < U 4 uj, the two eigenvalues are complex conjugates of each other with 111 = 1 

h , L  =.l. 

positive eigenvalues for MZ and so the fixed point (0,O) is hyperbolic. 

thus leading to an elliptic fixed point. 
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Figure 3. The Poincar6 surface of section for virious values of the velocity: (a) The invariant 
manifolds of the bouncing ball orbit C for U = 0.5. (b) The invariant manifolds of the figure 
eight orbit B and its symmetry p m e r  for w = 0.7. Some KAM lines around the now stable 
bouncing ball orbit are also shown. (c) Magnification of the environment of one of the fixpoints 
as shown in (b) by broken curves. (d) The same as (b) for U = 0.85. In addition some KAM 
lines around the two different symmetry related folded double loops D of period 2 are shown. 
(e) The same as (b) for U = 0.9. (f) The same as (b) for v = 0.965. (s) The same as (b) 
for U = 0.999. (h) The same as (0)  for U = 1.01. Open circles mark ihe position of unstable 
fixpoints. 

For U > uA where d is negative the eigenvalues of M are positive and the fixed point 

Now let us consider the angle of the complex eigenvalue which is defined by 
is hyperbolic again. 

(13) 

At each value of U where 8 is a rational multiple of 211 there is a bifurcation leading to 
higher periodic points in our map M. For the Poincari map MZ we have to look at rational 
multiples of n. Therefore we define the winding number w(u)  as 

Re A 
I4 

6 = arccos - = arccos(1- 2d). 

(14) 
8 1  

w(u)  = - =~-arccos(l-2R/a+2RuZ). 
X X  

For U = uB the winding number equals 1 and with increasing velocity it becomes smaller 
until w(u)  = 0 at U = UA. At velocities where w ( u )  is a rational number p / q  we obtain 
orbits of period q branching out of the bouncing ball orbit. For example at w(u) = 112 the 
orbits D and E are created as stable und unstable counterparts (figure 2). 
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Figure 3. (Continued) 

3.2. Scattering functions 

As noted in the introduction chaotic scattering can be characterized by a fractal set of 
singularities in the scattering functions. These singularities occur at initial conditions where 
the particle gets arbitrarily close to one of the unstable localized orbits of the system. 

When looking for the scattering functions in our model we fix the angle of the incoming 
particle and vary the impact parameter b. Our scattering functions are the number of bounces 
(passings through non-zero potential regions) and the scattering angle (outgoing angle) of 
the particle. At the singularities the number of bounces goes to infinity and the scattering 
angle is undefined which means it varies from --li to n in any small interval including a 
singularity. 

3.3. The development of A with increasing energy 

With increasing energy or asymptotic velocity U the invariant set A develops as follows. 
(i) For U < US there is only one localized orbit (the bouncing ball orbit) which belongs 

to a hyperbolic fixed point at (0,O) in the Poincarb map. As figure 3(a) demonstrates, 
its invariant manifolds radiate into the asymptotic region directly without the creation of 
homo clinic^ intersections. Accordingly there is no chaotic invariant set (no chaotic saddle), 
the scattering functions as a function of the impact parameter have a few isolated singularities 
at worst and the scattering is regular. 

(ii) For U + uB from below the eigenvalues of the bouncing ball orbit converge towards 
1 and the first bifurcation takes place at U = ug where w(u)  = 1. For symmetry reasons it 
is a pitchfork bifurcation where the bouncing ball orbit itself becomes elliptic and branches 
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off two hyperbolic fixed points which belong to the figureof-eight orbit B and its mirror 
image. Figure 3(b) shows the PoincarB section for a value of U just slightly above the 
bifurcation value ug. As we can see in the magnification given in figure 3(c). the stable 
and unstable manifolds of these newly born unstable fixed points form homoclinic and 
heteroclinic intersections. Accordingly the Poincard map contains a horseshoe construction 
leading to a chaotic invariant set. It is unstable, a so called chaotic saddle, and its fractal 
bundle of invariant manifolds radiates out into the asymptotic region making the scattering 
functions chaotic.  close to UB the chaotic strips are extremely small and hard to detect in 
a Poincark plot. With increasing U they become wider and chaos occupies a larger area in 
the plane of intersection. 

(iii) Inside the interval U E (UB, UA) the winding number w(u)  of the elliptic fixed point 
at (0.0) monotonically decreases and at all velocities where w(u) is a rational number it 
branches off  hyperbolic and elliptic fixed points of higher period. Due to symmetry reasons 
they are always created in symmetry related pairs. When the winding numbers of the new 
elliptical points are rational they also create new periodic points but they cannot be described 
with the above linearization. Around the origin there are KAM lines and so the bouncing 
ball orbit and also all the periodic orbits with higher period branching off from it are not 
accessible to the outside world immediately after their creation. Only for increasing values 
of U do many of these periodic orbits come into contact with scattering trajectories when 
the outer layers of the large central KAM island are destroyed (see figure 3(d)). At the same 
time the invariant manifolds of the figure-of-eight orbits undergo various homoclinic and 
heteroclinic bifurcations (see figures 3(e)  and 3(f)). These are coupled with sequences of 
saddle-centre bifurcations and cascades of period doublings of the newly created elliptic 
orbits. 

(iv) For increasing values of U the eigenvalues of the figure-of-eight orbits increase to 
infinity for U -+ U A  from below. At the same time the KAM island around the bouncing ball 
orbit is squeezed flat into a parabolic line. This degenerate case will be described in detail 
in subsection 4.2. Figure 31g) shows the Poincard section at a velocity slightly below UA. 

(v) For U > U A  the eigenvalues of the point (0.0) are real again, i.e. the fixed point of the 
bouncing ball orbit becomes hyperbolic again (figure 3(h)). The scattering angle @(bloc, U) 
now is less than iz for bloc > 0 and so there are no other periodic orbits left except the 
bouncing ball, which means that the scattering is regular again. 

4. The critical velocity w = VA 

As we have noted in section 2.1 for U = UA the scattering angle B(bl,,, U) is constantly 
H independent of the impact parameter each time the particle enters one of the Coulomb 
centres. Therefore the most influentialtype of periodic orbit at this velocity is a continuum 
of stadium orbits. Each one of them is represented by a point at (b, 0) in our Poincard 
plane with any b E [-U, U ] .  So our invariant set in the Poincart plane contains a straight 
line of fixed points that are all marginally stable: a displacement parallel to the b-axis leads 
to another fixed point of the same type and a small displacement in direction of the y-axis 
causes the trajectory to drift away linearly in time along a line parallel to the b-axis. This 
is the same behaviour shown by the bouncing ball orbits in billiard systems where parts of 
thewalls are parallel to each other [SI. In the phase space the continuum of stadium orbits 
forms a two-dimensional parabolic surface S,. 

We also have to keep in mind that although there is a continuum of periodic orbits 
the particle can only reach the two boundary lines of the parabolic surface (the outermost 
stadium orbit and its counterrotating symmetry partner) where b + a and b -+ -a when 
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approaching from outside. This is related to the fact that at the moment of disappearance 
the homoclinicheteroclinic intersections of the rest of the invariant set contract to these 
boundary points of the parabolic surface (see subsection 4.2). 

4.1. E m  delay statistics 

Now we are interested in the number N(n)  of particles that are trapped for longer than a 
given number n of bounces in the Coulomb potentials. 

In the (b, y )  plane of incoming asymptotes we define two strips Cl, Cz which contain 
the initial values for all trajectories that reach the two Coulomb centres. 

C1 : -a e b -~Rs iny  < a  

C2 : -a e b +  Rsiny < a .  
(15) 
(16) 

All particles starting from C ,  hit the centre which is closest to their starting point They are 
deflected backwards and disappear again into the asymptotic region after one single bounce. 
The particles starting from C Z  reach the other centre if they are not deflected by the first 
one. All other initial conditions never reach any of the centres. S o  the interesting initial 
conditions for multiple scattering are those which lie in C2 but not in C1. 

For each deflection the scattering angle is exactly i~ and the impact parameter b changes 
constantly by 

Ab = b' - b = 2Rsin y. (17) 
For y > 0 the impact parameter increases constantly as long as b does not exceed the 
maximum impact parameter which is given by 

b,,(y) = a  - Rsiny. (18) 
Therefore the number of bounces for a particle from C2 is given by 

a - b  
2Rsiny 2 

where trunc(x) denotes the integer part of the argument. 
It follows that the initial conditions for all particles that reach more than n bounces 

have to lie below a certain curve if the incident angle y is positive. For y e 0 we get a 
similar condition which gives us a third strip 

X3(n) : -a e b f  (271 + 1)Rsiny < a .  (20) 
Note that &(O) = E*. 

Now we can identify all particles which show more than n bounces. They are given 
by the initial conditions that lie in C ( n )  = C3(n) n C2\& and N ( n )  is propoaional to the 
area of this region. 

In the b-R sin y plane (figure 4) the boundaries of our strips are straight lines and for 
n 5 0, C ( n )  consists of two triangles with area 

a2 
A(n) = - 

n(n + 1) 
and with N ( n ) / N ( I )  = A(n)/A(I) we get 

This means that for large values of n we have a power law decay with N(n) - n-< where 
U = 2. As we can see in figure 5 this is in very good agreement with the numerical results. 



6896 C Lipp and C Jung 

1.0 

0.5 

,$- 0.0 
v1 

-0.5 

-1.0 
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

b 

Figure 4. The lines thaI sepmte mjectories of different behaviour in the plane of asymptotic 
initial conditions. The hatched area marks iniliul conditions leading to more than n bounces. 
The strip Xi(") is plotted for the example of n = 4. For more information see section 4.1. 

Figure 5. The time delay Statistics for U = UA: relative number of trajectories suffering 
more than n bounces against n in double logarithmic representation. The crosses represent the 
numerical statistics for mdomly chosen initial conditions. The continuous c w e  corresponds 
to equation (22). 

4.2. Structure of A at the critical value 

Exactly at U = UA parts of the figure-of-eight orbits and the droplet orbits run exactly on 
the cut-off boundary of the potentials. This makes them infinitely unstable, since along the 
cut-off line the trajectory can go off tangentially at any point. Furthermore the bundle of all 
other localized orbits except the stadium orbits contract to this cut-off line. The outermost 
stadium orbit also runs partially on this cut-off line. Therefore there are heteroclinic switches 
between the figure-of-eight orbits, the droplet orbits and the outermost stadium orbits. Of 
course, all these localized orbits which run partially on the cut-off line are infinitely unstable. 
In position space all these unstable orbits are restricted to the following set of finitely many 
lines: the se-ments with IyI < R of the tangents to the cut-off lines running parallel to 
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the y-axis at x = in; the segments with r2 < R2 -a2 of the tangents to the cut-off lines 
running through the origin; the segments starting in one centre and touching tangentially 
the cut-off circle around the other centre; and the upper parts of the cut-off lines themselves 
which connect and continue the just mentioned tangent segments. In the Poincart plane all 
the unstable localized orbits are restricted to the eight points which also belong to either 
the figure-of-eight orbits or to the outermost stadium orbits or the droplet orbit. 

The bundles of invariant manifolds to the unstable localized orbits squeeze together to 
lines, their scaling factors become zero. This is very similar to the events in an abrupt 
bifurcation; However, there are also some important differences. First, in our case the 
eigenvalues of the figure-of-eight shape orbits go to infinity with an algebraic behaviour with 
power -4 as~a  function of d = (U: - u2)/(u: -U:) in the Poincart map. Correspondingly 
the scaling of the fractal bundle of manifolds of the unstable part of the invariant set follows 
d4.  This result emerged from the numerical computations and can be derived analytically 
as follows. 

If u2 = I /a  - d / R ,  then to second order in d the position of the unstable fixed points 
in the Poincart map are given by 

b = 0 sin2 y = a2(1 - d2(1 - a 2 / R Z ) ) / R 2 .  (23) 
For the derivative of the deflection function we obtain thereby in lowest order in d the value 

(24) 
dB 
db 
- = 2@(R2 - a2)-lI2, 

Taking the linearization of M around this point and calculating its largest eigenvalue /L 
gives in the leading order in d the result 

/L = - 4 d - 2 .  (25) 

Since the Poincart map is M 2 ,  the~larger eigenvalue of the figure-of-eight orbit in the 
Poincart map is given as /L' in leading order in d which explains the power -4. In 
contrast, in equations (14) and (C6) in [5] it is shown that in a generic abrupt bifurcation 
the quantity dB/db as well as the eigenvalues of periodic points in the symmetry reduced 
Poincart map go with l / d  per iteration step. At the moment the origin for the difference 
in the power behaviour~of this scaling is not clear to us. It may be connected with our 
attractive potential wells with hard cut-off, while abrupt bifurcations have been studied so 
far for repulsive potential mountains only 161. 

Second, in our case there is no hyperbolic behaviour of the invariant set directly below 
uA in contrast to the generic abrupt bifurcation. This is connected with the behaviour of the 
bouncing ball orbit and of the KAM island around it for U + UA. The KAM island around 
the point (0.0) becomes more and more elongated. Its width in y direction goes to zero 
while its width in b direction converges to 2a. And for U = U A  where w(u) = 0 we obtain 
the continuous line of parabolic fixed points in the Poincart surface of section. 

On intuitive grounds we can understand the collapse of the invariant set to a line as 
follows. Exactly at U = UA the~scattering angle in each potential hole is exactly z whatever 
the impact parameter is, as long as Ibl i a. Therefore the only possible type of localized 
orbit is the one which is composed of arcs making turns of x inside the potentials and 
straight line segments parallel to the y-axis in between the potential holes. So the only type 
of periodic orbits left (except the infinitely unstable ones running exactly on the cut-off line) 
are the ones of stadium type. All other types of periodic orbits, the ones containing straight 
line segments not exactly parallel to the y-axis, are lost when U + UA. In this way the 
invariant set in the Poincar6 map collapses to the subset of points describing~perpendicular 
intersections of the x-axis, i.e. to the line sin y = 0. 
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The similarities and differences of our scenario at U = ~ U A  with the generic scenarios can 
be summarized as follows. In the abrupt bifurcation a fully developed chaotic set is created 
which is hyperbolic in  the vicinity of the bifurcation value of the parameter. In our case we 
have a sudden bifurcation to a partially developed chaotic set. Just below the bifurcation 
value it is half developed compared to a complete horseshoe of three fixed points. This 
is also in contrast to the first generic scenario mentioned in the introduction and to the 
scenario present in this model at U = UB, where the chaotic set starts at development stage 
zero. In common with a generic abrupt bifurcation the outer periodic orbits of the invariant 
set become infinitely unstable and the scaling factors of the bundles of invariant manifolds 
go to zero. 

Of course, also the behaviour of the fractal dimension and of the Lyapunov exponent 
in our case is different from the behaviour in a generic abrupt bifurcation. In our case 
there exist KAM islands up to the bifurcation value of the parameter. Therefore the partial 
fractal dimension (fractal dimension of the transversal structure of the bundle of invariant 
manifolds) always has the value one and the Lyapunov exponent always has the value zero. 

5. Symbolic dynamics 

Next we describe the approach U + UA by a symbolic dynamics. There are three different 
fixed points in the PoincarC map where the two outer ones belonging to the two figure- 
of-eight orbits are symmetry related and therefore equivalent. Accordingly the invariant 
set is a symmetric ternary horseshoe. To describe its development we introduce a formal 
parameter (Y in analogy to [9-111. 01 gives the development degree of the actual horseshoe 
compared to a complete ternary horseshoe. The value of 01 is related to the length of the 
tendrils of the invariant manifolds of the unstable fixed points. At U = ug the horseshoe 
starts at development (Y = 0. For U + U A  (Y converges towards 112. The present system 
has the unusual property that the horseshoe disappears completely at 01 = l j 2  in a sudden 
bifurcation. It never becomes more than half developed. 

In general a symbolic dynamics of an incomplete horseshoe containing KAM lines is of 
infinite complexity. In the branching tree pruning occurs and we need grammatical rules 
selecting ont the allowed symbol blocks [12-161. However, as shown in 191, there are 
intervals of the physical parameter (in our case it is U), for which an approximate symbolic 
dynamics with finite grammatical rules is valid to a rather high level of the hierarchy. These 
intervals are the ones in which the tips of the tendrils of low levels of the hierarchy end in 
gaps of low levels. Then the tips of tendrils of high levels end in the outside region and 
the tendrils avoid tangencies on low levels which would prevent any possibility even for 
approximate simple grammatical rules. Each interval of the physical parameter in which 
such a structure holds belongs to a single value of the formal parameter (Y. For some more 
information about the construction of symbolic dynamics for incomplete horseshoes see also 
[17]. For the sake of brevity we do not repeat here all these ideas, we only apply them to 
the present system and refer the reader to the references given above. 

In this paper we are mainly interested in the degenerate sudden bifurcation at U = U*, 
(Y = lj2. To understand the development of the invariant set when the parameters approach 
this particular value from below, we utilize a sequence of (Y values which converges to the 
value 112 from below such that for all values of the sequence we can construct a symbolic 
dynamics with rather simple rules and which is valid in good approximation to rather high 
levels of the hierarchy. An appropriate possibility is the sequence cuk = (3x - 1)/(2.3') 
where k runs over positive integers. Tke cases k = 1,2,3, (Y = 1/3,4/9, 13/27 are reached 
in U intervals lying around U = 0.9,0.965,0.98 respectively. The corresponding horseshoe 
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constructions for k = 1,2 are shown in figures 3(e)  and 3(f) respectively. 

-0.1542 -0.1541 -0.1540 -0.1533 
impost Por.m.ler 

Figure 6. Number n of bounces against the impact parameter b for fixed incoming speed 
U = 0.965 which belongs to the formal parameter value a = 4/9. The incoming direction d e s  
an angle of 50 degrees U, the y-axis. ( U )  shows the whole structure, (b)  gives a magnification 
of the pat marked by the two broken lines in (a). 

As has been explained in [IO], the easiest way to construct a symbolic dynamics star ts  
from the scattering function n(b), which is characterized by the number of bounces for 
fixed incoming direction. In figure 6 we present as an example demonstrating the scattering 
function for U = 0.965, (Y = 4/9. (a)  gives an overview of the whole structure and ( b )  gives 
a magnification to show the self-similar regularity of the shucture under magnification. Next, 
on level m we choose the threshold value n = m and find all impact parameter intervals 
J r  in which n(b) > m inside and n(b) < m outside. In the corresponding branching tree 
each interval Jj" is represented by one entry on level m. This is connected with the entry 
of the interval JY-' of level m - 1 if J r  c .I;"-'. The branching tree corresponding to 
the scattering function of figure 6 is presented in figure 7. This hierarchy of partly nested 
intervals coincides with the hierarchical construction of the corresponding homoclinic tangle 
as shown in figure 3(f) .  In figure 7 the entries are already labelled in the most simple 
and natural way by the symbols X, Y ,  Z .  These symbol values do not have a one-to-one 
correspondence to the three fixed points of the Poincare map. 

This type of symbolic dynamics is obtained from a scattering function. Accordingly 
it only can describe the unstable part of the invariant set which is in contact with the 
scattering trajectories. It is never able to describe the behaviour. inside KAM islands. It 
also breaks down on the surface of KAM islands. Therefore the symbolic dynamics also 
breaks down for the scattering behaviour at very high levels of the hierarchy where the 
tendrils of the invariant manifolds of the figure-of-eight orbits dive into the secondary 
fractal smctures around KAM island. This' is the level of hierarchy where in the scattering 
behaviour non-hyperbolic effects take over and the time delay statistics crosses over from 
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Figure 7. Branching tree Corresponding to the scattering function plotted in figure 6. Each e n q  
is labelled by the last digit of its symbolic code. 

exponential behaviour to algebraic behaviour [18-201. For more information on the errors 
in the approximate symbolic dynamics constructed along this scheme see [9]. 

If we do the corresponding construction for all parameter values r ~ k  then we obtain the 
following simple grammatical rules: 

(i) On symbol strings ending on X or on Y it is allowed to append X or Z. 
(ii) On symbol strings ending on Z~but not ending on a string of only Z's of length k 

(iii) On symbol strings ending on a block of only Z's of length k it is allowed to append 

In the limit k + 00 we obtain the following very simple rules: 
(i) On symbol strings ending on X or on Y it is allowed to append X or Z. 
(ii) On symbol strings ending on Z it is allowed to append X or Y or 2. 
From these rules we obtain the following values for the branching ratio Bk = B(uk) of 

the branching tree: 51 = 2, Bz X 2.27, B3 M 2.36, B,  = 1 +2'/*. The topological entropy 
of the unstable part of the invariant set is the logarithm of this branching ratio B.  

it is allowed to append X or Y or 2. 

X o r Y .  

6. Conclusions 

It seems rather unusual that our system becomes regular again at small values of the energy. 
This may be related to the hard cut-off of the potentials. Alternative computations with 
smooth exponential screening have shown fully developed chaos (a complete horseshoe with 
three fixed points) for small energy. In addition, in [21] scattering off a smooth two-centre 
well has been investigated; Here also complicated behaviour has been reported for low 
energy. 
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The creation of A at U = ug is a symmetry adapted version of the first generic 
scenario mentioned in the introduction. Exactly at U = ug the bouncing orbit C becomes 
parabolic and branches off the two symmetry-related orbits B. This pitchfork bifurcation 
is the symmetry adapted counterpart to a saddle-centre bifurcation (see also page 150 in 
[22]). In this sense the behaviour of A at the lower end of its parameter of existence is 
nothing very unusual. For another instructive example of this route to a chaotic saddle see 
the collinear model for the HgIt molecule presented in [23]. 

In contrast, the behaviour at the upper end is remarkable. The degenerate sudden 
disappearance of A in this particular model depends essentially on two properties. First on 
the independence of the deflection angle on the impact parameter for U = UA and second 
on the simultaneous loss of the figure-of-eight orbit B which disappears into the cut-off 
boundary of the potential. This scenario is not stable against deformations of the potential 
and numerical computations have revealed a rather different and more generic scenario for 
exponential screening. Moreover it is well known that the two-centre Coulomb potential is 
completely integrable if there is no cut-off at all. 

The occurrence of a single smooth isolated surface of parabolic orbits surrounded by 
scattering trajectories only is not generic in Hamiltonian scattering systems. On the other 
hand, parabolic surfaces are also not completely unknown.  for example they occur in 
billiards with walls which are partly running parallel to each other [PI. Such families 
of periodic orbits can have a profound influence on the quantum behaviour of a system 
[?A, 251. Parabolic surfaces also occur in hydrodynamic models for scattering chaos, where 
the parabolic orbits are formed by particles remaining on the wall of an obstacle in,the 
flow [26-27]. However, in these cases the parabolic surface exists independentIy of the 
parameter and the structure of the complete invariant set h is much more complicated than 
in our example for U = U A  since in the hydrodynamic models and in the chaotic billiards 
the smooth parabolic surface is embedded into a complicated chaotic set. Therefore our 
present example belongs to the simplest class of chaotic scattering systems having a smooth 
parabolic surface in the phase space which is accessible to scattering trajectories. And its 
understanding can serve as an initial step prior to the analysis of more complicated invariant 
sets containing smooth parabolic surfaces as part of more complicated invariant sets. 

S, is an element of marginal stability. In generic Hamiltonian systems the occurrence of 
subsets of marginal stability is rather common, namely in the form of KAM tori. However, the 
outermost invariant lines of KAM islands are not smooth and together with their environment 
of fractal patterns of secondary smctures and cantori (for a detailed description see [28]) 
they lead to a different behaviour of the time delay statistics. Trajectories can find their way 
out of this fractal cage by a very slow diffusive type of random walk only where the distance' 
travelled grows slower than linearly with time. This process can be described as diffusion 
in a self-similar Markov tree [29-311. In contrast near smooth parabolic surfaces the vector 
field in phase space is parallel to the surface and therefore the distance travelled grows 
linearly with time for paru'cles initiated nearby. By this mechanism KAM islands lead to the 
power U = 1.5 [18-20] in contrast~to U = 2 in our present example. In the hydrodynamic 
examples the power is also U = 2 [26, 271. This allows the following conclusion: if in a 
Hamiltonian scattering system the scattering trajectories are in contact with a smooth surface 
of marginal stability only, then this leads to the power U = 2 in the time delay statistics in 
contrast to the rough surface of KAM islands which leads to U = 1.5. 
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